
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S .  Vol. 44. No. 4. 19S3 

ON UNIVERSAL LOCALLY FINITE GROUPS 

BY 

RAMI GROSSBERG AND S A H A R O N  SHELAH" 

A B S T R A C ' I  

We deal with the question of existence of a universal object, in the category of 
universal locally finite groups; the answer is negative for many uncountable 
cardinalities; for example, for 2"o, and assuming G.C.H. for every cardinal 
whose cofinality is > no. However. if A > K when K is strongly compact and 
cf A = 1%, then there exists a universal locally finite group of cardinality A. The 
idea is to use the failure of the amalgamation property in a strong sense. We 
shall also prove the failure of the amalgamation property for universal tocally 
finite groups by transferring the kind of failure of the amalgamation property 
from LF into ULF. 

1. Introduction 

Universal locally finite groups were introduced by P. Hall [3], but we shall 

refer to the presentation of this subject in the book of O. Kege[ and B. Wehrfritz 

[4]. The three basic facts on universal locally finite groups (u.l.f.) are: 

FACT A (Theorem 6.4 in [4]). Up to isomorphism there is a unique countable 

u.l.f, group. 

FACT B (Theorem 6.1 in [4]). Every u.l.f, group is universal with respect to 

countable locally finite groups (i.e., given G which is u.l.f., then for every locally 

finite countable group H there exists a group monomorphism f : H  ~ G). 

FACT C (Theorem 6.5 in [4]). Every locally finite group can be extended to a 

u.l.f, group. 

In this context the following questions were asked in [4]: 
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QUESTION VI.1. Are any two u.l.f, groups of the same uncountable cardinal- 

ity isomorphic? 

QUESTION VI.3.. Does every u.l.f uncountable group G contain an isomor- 

phic copy of every locally finite group H such that I HI<=IGI? 
Or, in other words: Are the generalizations of Facts A and B true for every 

uncountable cardinality? 

A. Macintyre and S. Shelah [5] answered Question VI.1 by proving that for 

every uncountable cardinal A there are 2 ~ pairwise non-isomorphic u.l.f, groups 

each of cardinality 3,. 

They also answered Question VI.3 by constructing a locally finite group H of 

cardinality N~ such that for every K _-> ~ there exists a u.l.f, group G of power r 

such that H is not embeddable into G. Let us introduce here some definitions 

and notation. 

DEFINITION 1. (1) LF = {G : G is a group and every subgroup generated by a 

finite subset is finite}. 

(2) U L F - - { G  E L F : G  satisfies (a) and (b) below}. 

(a) For every finite group H, there exists a monomorphism h :H--> G. 

(b) For every HI, H2 finite subgroups of G, i f f  : H~ = H2 then there exists 

an element g E G such that x --> x ~ induces f. 

DEFINITION 2. Let (S be a category whose objects are sets (i.e. we can speak 

about the cardinality of an object). 

(1) Let p, be a cardinal number, then ~ ,  = { G  E ~ : I G I  =/x} and (S~, = 

{C e~:lGI---~}. 
(2) G E ~ is/z-universal  if for every H E (S,, there exists a monomorphism 

(of ~)  f : H ---* G. 

(3) Let A be an infinite cardinal number. ~ has the A amalgamation property 
(A-A.P.) if for every G~ E ~ ,  for / = 0 , 1 , 2  such that there are fS- 

monomorphisms f~:Go--~Gi for ! = 1,2, there exists G E ~  and monomor-  

phisms g~ : G~ --> G for l = 1,2 such that (fl o gl) [ Go = (I"2 ~ g:) [ Go, or, in other 

words, the diagram 
G, 

I,T 
Go ~ G2 

can be completed to a commutative diagram in (~. 

By Fact B every countable u.l.f, group is no-universal, so in the category LF,o a 

universal object exists, and moreover every u.l.f, group is universal. This can be 
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understood as a generalization of the fact that Sn ( =  the general symmetric 

group of n-elements) is universal for the category of finite groups of cardinality 

So you may ask: "Is the parallel generalization for uncountable cardinalities 

t rue"? For example, does there exist a universal object in LF,,? Remember  that 

Macintyre and Shelah proved a weaker result: they proved that contrary to the 

situation for countable groups, not every uncountable u.l.f, group is a universal 

object for LF, but still, by this result, it is possible for example that there exists 

G E ULF,,  and all the 2", non-isomorphic u.l.f, groups isomorphic to subgroups 

of G. We shall prove here that this situation is impossible. 

THEOREM 3. For every uncountable cardinal A which satisfies 

(1) X = X "o 

or 

(2) there exists a cardinal tz such that A < I~ <-- A',, and 2" < 2 ~, there is no 

universal object in ULF~. 

COROLLARY 4. There is no universal object in ULF2-o, and if 2 -o < 2", then 

also there is no universal object in ULF,,.  

PROOF OF THE COROLLARY. The first half follows from Theorem 3 using (1), 

since (2~o) ~o = 2",~'o = 2"0. 

The second half follows by taking/z = 1% and A = 1~. Now since 2 ",, < 2 ", and 

N~<2 "~ (otherwise we can apply part (1)), No<2 "o= N~o, so we can apply 

Theorem 3. 

COROLLARY. Assuming G.C.H.,  for every uncountable cardinal A with un- 

countable cofinality, there is no universal object in ULF~. 

PROOF. Use Theorem 3(1). A = A',, follows from G.C.H. and the hypothesis 

on A. 

So under G.C.H. we have 

OPEN PROBLEM A. Let )t be uncountable cardinal of cofinality to. Does there 

exist a universal object in ULFx ? In particular, what is the answer for A = ~ ? 

Under the impression of the last corollary the reader may guess that the 

~nswer to Problem A may be positive. 

THEOREM. I f  r is a compact cardinal ( = the logic LK., is compact), and A > r, 

strong limit of cofinality to, then there exists a universal object in ULF, .  
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The last theorem will be proved in section 5 where a more general theorem is 

presented. In the context of Corollary 4 it is interesting to mention 

OPEN PROBLEM B. Is the following statement consistent with ZFC: " there  

exists a universal object in ULF,,,"? 

Clearly if such a model exists, then by Corollary 4, 2"o = 2", must hold. In 

section 4 we shall answer a weaker question. 

In section 2 the proof of Theorem 3 is divided into a sequence of lemmas and 

claims; we shall get more information during the proof. Also we shall reprove 

the Macintyre-Shelah result: Assuming 2'% < 2", there are 2", non-isomorphic 

groups in ULF,,,. 

The last theorem in section 2 is complementary to Corollary 4 in the sense that 

it presents a model of ZFC where 2"0 = 2",, but there is no universal object in 

ULF,,,; so 2",, < 2", is not a necessary assumption to conclude the non-existence 

of a universal object in ULF,,,. 

The " reason"  for the non-existence of a universal object in ULF~ is the failure 

of a strong form of the K-A.P. in LF. for every K < A. Section 3 is dedicated to 

the construction of a natural mapping from LF into ULF which shows that all 

counterexamples to the amalgamation properties in LF can be transferred into 

ULF. 

In section 4 we prove a general theorem for categories of sets (not necessariIy 

l.f. groups or groups at all) assuming 2"o < 2", which together with the result of 

section 3 gives a new proof to the fact that there is no universal object in ULF,,, 

and that there are 2", non-isomorphic u.l.f, groups of cardinality ~1. The 

advantage over the earlier proofs in this paper is that now we can answer a 

version of Problem B for the general theorem from section 4. 

For a general classification theory of classes of models via their amalgamation 

properties, the reader is referred to [7], [9], [10] (start by reading [10]). Really, 

the general theorems in section 4 follow directly from some theorems in [10]. We 

included the work here because we could present it in a way accessible to the 

algebraist without any knowledge of logic. In this paper we shall not use that 

kind of classification theory. The ideas of section 2 are motivated by some of the 

methods of [8] chapter VIII, but we don' t  assume the reader is familiar with it. 

NO1"A~ON. (1) Notice that (a,b,c,...) will be used in two different ways, 

once as a sequence, and again as a subgroup generated by (a, b, c , - . - ) .  

(2) A will stand for an uncountable set. 

(3) Let S(A) = {f : A --* A If  is a bijection}, i.e. S(A) is the set of permuta- 

tions of the set A. 
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(4) A, /x, r, X will stand for infinite cardinal numbers. Remember that a 

cardinal is an ordinal, a,/3, % i, j stand for ordinals, and please recall that the 

ordinal a is also the set of smaller ordinals, n, k, l stand for natural numbers, to 

is the first infinite ordinal and, according to our notation, also the set of natural 

numbers. "O, v stand for sequences and r/[i] is the i-th element of rl; l(r/) is the 

length of r/, i.e. the domain of 77 when 77 is viewed as a function, so 

r/ ={ r / [ i ] : i  </01)}.  ~h is the set of to-sequences (sequences of length to) of 

elements from h (i.e. ordinals smaller than h). r/<I ~, means: the sequence to is 

an initial segment of the sequence ~,. All groups shall be infinite unless stated 

otherwise. 

2. Non-existence of universal groups 

DEFINITION 5. (1) A permutation f E S(A) is a finite permutation if f moves 

at most finitely many elements of A. 

(2) f ~ S ( A )  is almost finite if {x C A  : f ( x ) : x }  is at most countable; we 

denote this set by Dotal. In addition we require that there exists a family 

{ W ~ : n < t o }  of finite subsets of Domf  such that D o m f = U . < ~ W T ,  and 

( V n < t o ) [ l W ~ [ = l W ~ l ^ f r W T E S ( W T )  ] ^ [ n ~ k  ~ w ; n w ~ = ~ ] .  

(3) Let f, g C_ S(A), f and g are almost disjoint if [Dom f n Dom g ] < 1%. 

(4) Let F C S(A) be a family of almost finite permutations which is also 

pairwise almost disjoint (i.e., if f ,g  E F  then f ~  g ~ f and g are almost 

disjoint). Sg(A, F)  is the subgroup of S(A) generated by: (a) the elements of F, 

and (b) the finite permutations of A. 

(5) Let a be a finite natural number or to; and let - i / = { r t [ i ] : i < a }  be a 

sequence without repetitions of elements of A (i.e. ~7 is an injection of ot into 

A). Denote by f , ~ S ( A )  the permutation which satisfies: (i) Domf ,  = 

{r/[i] : i < a}, and (ii) for every i < a, f ,  interchanges r/[2i] by rt[2i + 1]. 

(6) Given ",7 = (rl[i] : i < to), a sequence of elements without repetitions from 

A, denote rt- = (7711 + i]:  i < to). 

REMARKS. (1) Please be careful: notice the difference between Domf  and the 

usual notation D o m f  ( =  domain of the function f). 

(2) Sg(A) is just Sg(A,~),  i.e., all the finite permutations of the set A. 

THEOREM 6. Let A and F be as in Definition 5(4). Then we have : 

(1) Sg(A) E L F .  

(2) Sg(A, F)  E L F .  

(3) Let 77 be an to-sequence of distinct elements, and denote A = I A I, then the 

triple Sg(A ), Sg(A, {f,, }), Sg(A, {f,,-}) exemplify the failure of the A-A.P. in LF. 
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PROOF. (1) IS well known. 

(2) By (1), it suffices to prove that given h~ , . . . , h ,  ESg(A) ,  f , , . . - , f , ,  U F  

then K = ( h , , . . . , h n , f ~ , ' " , f , . )  is a finite subgroup of Sg(A,F). By the 

choice of the h's and / ' s  there exists a finite set W_C A such that for all k 

satisfying l_-k-<_n, DomhkC_W, and for every l_-<k, l_---m, k ~ l  

Dom/k f3 Dora/, C_ W. Notice that any finite W' _C A which includes W has the 

properties of W, so we may increase W. Denote Ao-- W, and for 1 -< l <- m, 

At = Dom)~ - W, let A,.~, = A - U]~t~,. Dora/,. 

Clearly { A ~ : k  <-_ m +l}  form a partition of A. Now we shall define an 

equivalence relation E on K with finitely many equivalence classes and we shall 

prove that if gt, g2 U K then gtEg2 ~ g] = g2. 

Given gt, g2 U K for l =< m + 1 define g,E,g2 itt g] r A, = g2 r At. Finally let 
uf 

g~Eg2 r (Vl _-< m + 1)[glEtg2]. Clearly E is an equivalence relation on K. It 
suffices to prove that for every l _-< m + 1 there are finitely many equivalence 

classes. It is easy, since in At (for l -> 1) there is only one generator 1~ [AI (the 

restriction of the others to As is the identity); the order of ~ [ At is the divisor of 

(I WT[)! So we are done since Ao is finite. Now g,Eg2 ~ g] = g2, since every 

g U K satisfies (Vl _-< m + 1) [g IA, US(At)] (remember that we may increase 

the set W). 
(3) We leave the reader to check that f ,  is almost finite; combining f~, [,  , and 

/t~t0].~ltlt we get N0 distinct elements, hence {f,, f ,  ,/t~i0].,t,]~} generates an infinite 

group. Hence the groups cannot be amalgamated by locally finite groups. 

CLAIM 7. For every infinite cardinal number A, LFA has a universal object iff 

ULF, has a universal object. 

PROOF. Let G be a universal object of LF~. By Hall's theorem (Theorem 6.5 

in [4]; readers who are not familiar with it and don't want to check the reference 

can read a generalization of it in the next section - -  Theorem 18) there exists 

(~ U ULF~ containing G as a subgroup. It is easy to verify that (~ is a universal 

object of ULF~. Now assume that ULF~ has a universal object G;  clearly this 

object belongs to LF~ (since ULF C LF). Again it is easy to check that the same 

object G is universal for LF~. Let H U LF~ be given. By the above-mentioned 

theorem of Hall there exists/-t U ULF~ containing H as a subgroup. Since G is 

universal for ULF~ /4 is embeddable into G and this embedding induces an 

embedding of H into G (the restriction of the embedding to H). 

The next theorem proves the second half of Theorem 3: 

THEOREM 8. If  A satisfies : there exists a cardinal ix such that A < Iz <-_ A ~o and 

2 ~ < 2 ~, then there is no universal object in LF~,.  
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PROOF. Choose {r/, ~i < /x}C~A such that i < j < ~  

Range(r/i) FI Range(r/j)l < No and each r/i is a sequence without repetitions. 

Now for S C/.t and i < /x  define 

~f~ if i E S ,  
g S= 

[ [~7 if i ~ S. 

Clearly {g~: i < /z}  satisfies the demands from F in Definition 5(4), so we can 

define Gs = Sg(A,{g~: i </z}). Assume by contradiction that G* E LF_<~ is a 

universal object. For every S C_/~ there should be an embedding hs : Gs ~ G* 

There are 2 ~ distinct subsets S of /x .  The number of different embeddings of 

Sg(A) into G* is at most I G*I Isg(*)l =/x* =<(2~) ~ = 2*. Combining the last two 

sentences we have S~, $2 C/~ such that S, ~ $2 and hs, f Sg(A) = h~ [ Sg(A). This 

is a contradiction: We may assume that there exists i E S~ - $2 so 

Sg(A, }) - - - - ,  G* 
inc" l hsl Th" 

Sg(A) inc. ' Sg(A,~;})  

contradicts Theorem 5(3). 

CONCLUSION 9. Assuming 2"o<2", neither LF,, nor ULF,,  has universal 

members. 

PROOF. Substitute A = No and /x = N, in Theorem 8 and use Claim 6. 

Now using the method of proof from Theorem 8 we can reprove a result of 

Macintyre and Shelah [5]. The advantage of our proof is its simplicity, but it has 

a disadvantage of relying on a weak continuum hypothesis; the result in [5] is 

proved in ZFC alone. 

THEOREM 10. Assume A satisfies : there exists a cardinal number i z such that 

A < tz <= A ~,, and 2' < 2"; then in U L F ,  there are 2" non-isomorphic groups. 

PROOf. For every S _C/x construct Gs ELF~ exactly as in the proof of 

Theorem 8. Assume by contradiction that the number of isomorphism types of 

elements of ULF~ is X < 2", since 2' < 2" ; choose K = Max{x, 2* }, we know that 

K < 2 ". For every S _C/z let Crs ~ ULF,. containing Gs (exists by Hall's theorem 

- -  Theorem 6.4 [4] or next section, Theorem 18). Since K => X there exists 

{G~ : i < K} C ULF~ such that for every S C/x there exists i (S) < K such that 

Gs -~ G,s). By the pigeonhole principle for regular cardinals (K § is regular and 

K § =< 2 ~) there exists {S, C_/~ : i < X +} of cardinality K+ such that 

i < K + : f f ~ : G s , ~ C ~ s o  and S~ ~ Ss for i ~ j < x +. 
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Now the number of mappings of Sg(A) into (3~ is/z ~ _-__ (2~) ~ = 2 ~ ; since 2 ~ < u § 

there must be i ~ j  < K § such that 1~ ISg(A)=f / ISg(A)  and f~ :(~s,--~ G~,, 

/~ : Gs, --~ Gso and we obtain a contradiction exactly as at the end of the proof of 

Theorem 8. 

COROLLARY 11. I f  2 "o < 2"' then there are 2", isomorphism types of groups 

from ULF,, .  

PROOF. Easy using Theorem 10. 

THEOREM 12. IrA satisfies A = A "o then there is no universal object in LF<A. 

PROOF. Let G E LF~ be an arbitrary group and we shall construct a group in 

LFA which cannot be embeddable into G. 

CLAIM 13. Let A = ~>A. For every r/ E ~A there exists a function h~ whose 

domain is K~ ={g E S g ( A ) : D e m g  _C{r/[n :n  < to}} such that 

( + )  For every h : Sg(A )---~ G there exists r/ ~ ' A  such that h~ C h. 

PROOF Or CLAIM 13. Define for every r / ~  ">)t a function /~ such that: 

(a) /~, is an embedding of the permutation group {77 r k : k < / ( r / )}  into G. 

(b) v<r/ ~fi~c_fi~. 
(c) l f h  is an e.mbedding of Sg({r/[ n : n < l(r/)}) which extends/~, then there 

exists an a < A such that h =/~,^<~). 
The definition of {/~, : ~/E ">A} is easy by induction on the length of r/. Now 

for every branch r / ~ ' A  define h, = U.<. /~<. .  This is an embedding of 

Sg({r/r n : n < oJ}) into G. 

Given h : Sg(A)---~ G we shall construct now an 7/as required in (+ ) .  This is 

achieved by defining 19 by approximations {r/. E "A : n < to}: 

For n = 0 take the empty sequence. 

For n = k + 1 by property (c) in the assignments o f / ~  there exists t~ such that 

/~,~/~',~ C_ h so take r/, = r/k+, = r/~',(a). By (b) r / =  Uk<~r/k is as we wanted. 

REMARK. Notice the similarity between the proof of Claim 13 and [8] VIII 

Lemma 2.5 (exactly as the game GI from Definition 2.1). 

BACK TO THE PROOF OF CLAIM 13. For every increasing r / E  "A define two 

almost disjoint permutations of A :gO, g~ by taking gO = f<,tt:~<-> and g~ = 

f<~-,:~<.>; note that ( r l I l : l  < to) is a sequence of elements of A ( =  ">A). By 

Theorem 5(3), Sg(A, {g~}) and Sg(A, {g~}) are extensions of Sg(A ) which cannot 

be amalgamated in LF. Moreover,  it is impossible to extend h~ (from Claim 13) 

to two embeddings of Sg(K~,{g~}) (for l = 1,0) into G. Hence there exists an 
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I, E {0, 1} (depending on r/) such that h,  cannot  be ex tended  to an embedd ing  of 

- -  / G *  Sg(K,,{g~}) into G. Define,  for  every  t i E ' A ,  g , - g ; .  Now let = 

SgU>A, {g~ : 7? E ~A }); by T h e o r e m  5(2) G*  E LF. Clearly I G*  I = A ",, = A. Now 

prove that  there  is no embedd ing  of G*  into G. If h : G*  ~ G is a monomor -  

phism, by Claim 13 there  exists 77 C~A such that h D h, .  Now h [Sg(K, .{g ,} )  

contradicts  the choice of g~ as g~. 

Now we shall prove a theorem which implies that the non-exis tence of a 

universal objec t  in ULF, ,  is consistent  with 2"0 = 2",. T he  proof  follows exactly 

[8] VIII  T h e o r e m  1.9. 

THEOREM 14. Suppose there is a universal object in LF_~ and No < A <= 2".. 

Then there is a family F of subsets of A, each of cardinality A, A ~ B E F 

A A B is ]inite, and the family has cardinality 2"0. 

PROOF. By Giorge t ta  and Shelah [2] Proposi t ion 5.1 there  is a Iocally finite 

group G, and {x, " rl E ~2} C_ G such that: 

| The  power  of the subgroup genera ted  by {x,, x,,} ( r / ~  v • ~2) is g [h (~ ,  v)], 

where  h is the largest c o m m o n  initial segment ,  and the sets A .  = {g(p) :  p E "2} 

are pairwise disjoint. 

Now for  any infinite B C_ w denote  by C[B] a subset of {77 E ~2 : (Vn < oJ) 

[nf f:B---~l[n]=O]} of cardinali ty A, and let G [ B ] = ( x , : r / E C [ B ] ) .  Fix a 

family {B, : i < 2"o} of infinite subsets of ~o which are almost disjoint. Let ,  for  

each i < 2",,, G~ = G [B, ]. 

To  prove our  theorem assume that there  exists a universal m e m b e r  H of LF=, .  

Wi thou t  loss of general i ty  we may assume that the set of e lements  of H is A. By 

universali ty of H, for  every  i < 2 "0 there  exists a monomorph i sm h, : G, --~ H. Let  

D, = {h , (x , ) :  • E C[B~]}. Clearly {D, : i  <2"0} is a family of subsets of A; we 

want  to prove that it is as F in the s ta tement  of this theorem.  Let  i ~ j < 2"0 and 

assume, for  the sake of contradict ion,  I D, fq Dj I => No, i.e. there  are {'0t : l < oJ} _C 

C[B,] ,  { v l : l < ~ o } c _ C [ B j ]  such that h , (x , , )=hj (x . , )  for  all l<~o .  Let  {a ,< 

A : l < oJ} be such that  a~ = hi (x,,) = hj (x.,) for  l < oJ. By the choice of the family 

of B~'s there  exists an n = n( i , j )  so that  B~ N B i C_ n, and so w.l.o.g. ~7~ [n  = "r/*, 

ut [n  = v* for  every  l. Now evaluate  the [~ower of (a, ,  a2) ( = the subgroup  of H 

genera ted  by a~, a2): 

I (a ,  a2),, I = ](h,(x, , ) ,h,(x~)) ,  ]=  l(x,,, x~),;, I 

= I(x~,, x.~)c. [ = g(h07, ,  rl2)) E U{Ak : k E B,, k -> n}. 
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Similarly I(a2, al)rt I E O { A k  : k E Bi, k >= n}. But this contradicts the assump- 

tion that the Ak's are pairwise disjoint and B~ fq Bj _C n. 

CONCLUSION 15. There exists a model of ZFC + 2"~ = 2", in which there is no 

universal object in LF,,. 

PROOF. Baumgartner [l] constructed a model of ZFC + 2"0 = 2 ", where there 

is no family of subsets of ~, as F in the statement of Theorem 14. 

3. The amalgamation property fails in ULF 

We shall prove the statement in the title in two different ways. The first is 

intended for logicians who don't  want to learn any group theory but are ready to 

believe in Fact C. The first way has another advantage (from our point of view), 

namely, to convince the algebraist that forcing is an important technique not 

only to obtain independence results. The second proof is for the algebraist who 

refuses to study any logic and, philosophically, is less complicated (i.e., we do not 

change the universe). 

By Theorem 12 the following two lemmas will imply what we want: 

LEMMA 16. A s s u m e  2 ~ = A +. I f  ULF satisfies the amalgamat ion  property 

then there exists a universal object in ULF~.. 

LEMMA 17. I f V ~ Z F C +  2 ~ > A+ t h e n t h e r e e x i s t s a f o r c i n g n o t i o n P s u c h t h a t  

V e ~ 2 ~ = A + and does not add new subsets o f  A. 

PROOF OF LEMMA 16. This was originally proved by B. Jonsson. Using 

2 ~ = ) t  + and the A-A.P. construct a model homogeneous group (which is 

universal) and use the Joint Mapping Property (J.M.P.) - -  possible by taking a 

direct product and applying Fact C. For more details see w in [10]. 

PROOFOF LEMMA 17. Let P = {f : (::la < A ' )  If : a ---** 2]}. Clearly P collapses 

2 * to A § and is A +-complete, so does not add new subsets of A, 

Now to the algebraic argument. First quote from [4]: 

DEFINITION 18. (1) Let G be a group. 

S(G)--{tr E S ( G ) :  3 H ,  a finite subgroup of G such that 

I(Vx G) [(xH y = 

(2) The mapping pc. : G --~ S ( G )  stands for the regular representation of G in 

S ( G )  by right multiplication. 
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FACr D (Lemma 6.3 in [4]). (1) If G E L F  then S(G) E LFic I. 

(2) If K, K* are finite isomorphic subgroups of G then K p and K *p are 

conjugate in S(G) (we take p = po). 

It is easy to verify that it suffices to prove 

THEOREM 19. Given G, H ~ LF and a monomorphism f : G ~ H then there 

exists F(G), F(H) @ ULF and a monomorphism F(f) : F(G)---> G(H)  such that 

the following diagram commutes: 

F(G) , F(H) 

l 4[ inc. inc. 

G , H 
f 

and we have that fF(G)I = IO {. 

PROOF. We shall construct the three required objects as a direct limit of 

w-sequences of triples as follows: 

For every n < o J  define V., U,, f . : V . ~ U ,  and p v . : V , ~ V . ~ : ,  

pu. : U. ~ U..l  such that the following diagram commutes: 

Vn+l ) Un+l 

v.  , U .  
L 

When all mappings are monomorphisms and K, K* are finite isomorphic 

subgroups of U. (V.)  then their images under regular right translation are 
conjugate in U,. ,  (V,+:). 

If we take Vo = G, Uo = H, fo = f and succeed in defining the above, then 

F(G) = lim,<~ V., F(H) = lim.<~ U. and F ( f )  = lim.<~f, will be as required in 

the statement of the theorem. So we want to define the above triples by 

induction on n < ~o. For a successor stage we use the following lemma which was 

proved by Simon Thomas and we thank him for letting us use it here. 

LEMMA 20. Let V, U and f be as above, then there exists a monomorphism 

h : S(V)---> S(U) such that the following diagram commutes: 

s ( v )  , s ( u )  

Pv I h I Ou 
V ~ U 

f 
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PROOF. Let I be a fixed left coset representative of f [V]  in U (/[V] is a 

subgroup of U since f is an embedding). So U = U{xf(u): x E I, v E V}. Now 

in order to define g = h(o') for each permutation o- ~ S(V) we want to define a 

permutation g of S(U) by xf(v)~xf(v") .  If is easy to check that h is as 

required. 

Now back to the proof of Theorem 19: Let {K,, : a < I V. I} be an enumeration 

of all finite subgroups of V, and define a function g :l v - I x l  v, I--~ s ( v , )  by 

,[if K,, -~Ka then g(a, fl) conjugates Ka, K~ in S(V.),  
g(ot, fl ) I 

I identity of S(V,), otherwise. 

Let v.4~={v~v, ug[IV,  I x l v ,  l]}. Similarly define U.+I and .f.,x to be a 

restriction of the function h : S(V.)---~ S(Uo) from Lemma 20. By repeating the 

proofs it is easy to prove 

THEOREM 21. LF and ULF have the same non-amalgamation numbers. 

In the context of Theorem 19 we can ask 

OPEN PROBLEM C. Construct a functor F :LF-->  ULF. 

4. Nice categories 

The category of countable universal locally finite groups has the following 

properties: 
(1) It has a unique (up to isomorphism) countable object. This is Fact A in 

section 1. 
(2) Every object has a proper extension. Multiply it by Sg(to) and apply Hall's 

theorem, or Theorem 18. 
(3) The amalgamation property fails (section 3). 

(4) Closed under direct limits of length =< oJ~. 

The last four properties are the motivation for the following: 

DEFINITION 22. Let (S be a category of sets. ~ is a A-nice category provided: 

(1) ~,  has a unique object up to isomorphism. 

(2) ( 'dM~IS~) ( = I N d i A )  and a monomorphism f :M- -~N  such that 

f (M)~N.  
(3) The )t-A.P. fails in ~. 

(4) (~ is closed under direct limits of length -_< A' 

So the above observations imply that ULF~ o is an no-nice category. 
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Now we have two nice properties of nice categories which follow from [10] 

section 3 (based on the method of [9]). 

THEOREM 23. Assume 2 ~ < 2 ~'. If  ~. is a A-nice category then t5 does not 

have a universal object of cardinality A ". 

THEOREM 24. Assume 2 ~ < 2 ~'. If (5 is a A-nice category then ~ has 2 ~' 

non-isomorphic objects of cardinality A' 

So for A = N,, the last two theorems provide an alternative proof to Corollary 4 

(second part) and Corollary 11. respectively. 

This is interesting in view of the open problem from the first section, since 

Saharon Shelah proved 

THEOREM 25 (Shelah [10]). Assume 2",,>N, and MA. There exists an 

No-nice category whose objects are models of a finite similarity type so that there 

exists a unique object up to isomorphism in CS,,,. 

So Theorem 25 shows that both the statements of Theorems 23 and 24 are 

independent of ZFC. 

5. A universal object may exist 

We shall prove a more general theorem than that stated in the Introduction 

(not only for locally finite groups). 

Let us assume in this section that K is a compact cardinal and A > K strong 

limit of cofinality No. Let L be a fixed similarity type of cardinality _-< K. 

THEOREM 26. Let ~S be the class of all L-models of a fixed L..~ sentence. There 

exists {M, : i < 2 ~ } C E~ such that for every M E ~S~ there exists i < 2 ~ and an L~.~ 

embedding f~ : M ~ M,. 

PROOV. Let {T, : i < 2 "} be the enumeration of all L... theories. It is enough 

to construct M, (i < 2 ~) such that every M G {N E ~S~ : N ~ 7],} is L~.. embed- 

dable into M,. so we are given a fixed T (L~.. theory) and want to construct MT 

as above. 

Fix an increasing sequence of cardinals {~. : n < w} satisfying/z,, = K, /z.., = 

~ . ~  converging to A (exists by the choice of A). Now to construct M-I, define 

{ M . : n  <to} ( V n < w ) l [ M .  l l=lz . . , ,  M.<L. .M.+ ,  and finally take MT = 

I,..J.<,o M.. By induction on n < w, n = 0, let D be the union of the L... complete 

diagrams of all models of cardinality/zo by taking for distinct models disjoint sets 

of constants. D has cardinality 2", but since distinct diagrams are disjoint the 
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assumption that K is compact is sufficient to conclude existence of a model Mo of 

cardinality ~ so that all models from {M E fS, : M ~ T} are embeddable into 

Mr, n > 0. Take Mn.~ so that it realizes all types in #n.~ variables and parameters 

from M. which are K-satisfiable in M. (every subset of cardinality g < K is 

realized); M,,~ exists by compactness of the cardinal K. Now we want to show 

that Mr is universal for all models from (S~ whose L,., theory is T. Let 

N ~ { N E ( S ~  : N ~  T}; by the Skolem Lowenheim theorem choose 

{N, E (S~,. : n < to} such that N~ < ~ , , N  and N = I,.J.<~ N~. Using the definition 

of {iV/, : n < to} it is easy to construct by induction on n < to L,. ,-elementary 

embeddings h. : N. ~ M. such that h, C_ h, ,  1- Now h = I,_J. <~ h, is the required 

L,,~-elementary embedding. 

COROLLARY 27. Let (S be as in the previous theorem, and assume in addition 

that (SA has the J.M.P. for 2 ~ (i.e. given {M, : i < 2" } C (S, there exists M E (S~ 

such that (Vi < 2 ~ ) M, is L,., embeddable into M). Then (S~ has a universal object. 

PROOF. Apply the J.M.P. for 2" on the result of Theorem 26. 

COROLLARY 28. ULF, has a universal object. 

PROOF. ULF clearly satisfies the assumption of Theorem 26 since it is 

definable by an L . . . .  sentence. It has the J.M.P. for 2" by taking the direct 

product (with finite support) and applying Hall's theorem (Fact C). 
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